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Abstract—Some sufficient conditions are found under which the generational genetic algorithm
with tournament selection first visits a local optimum in polynomially bounded time on average.
These conditions are satisfied on a class of problems with guaranteed local optima if the appropriate
parameters of the algorithm are chosen.
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INTRODUCTION

A genetic algorithm (GA) was suggested by J. Holland [15] and represents a randomized heuristic
search for an extremum which bases on an analogy with the genetic mechanisms in wildlife and
using some evolving population of the sample solutions. Various modifications have been widely used
in operations research, pattern recognition, artificial intelligence, and other areas [2, 6, 16]. Despite
numerous experimental studies of these algorithms, the theoretical analysis of their efficiency is currently
at an early stage [13].

In this paper, the genetic algorithms are studied in relation to finding the local optima of the
combinatorial optimization problems, namely, the NP-optimization problems [4, 9]. Some particular
attention is given to the situations when a GA is polynomially bounded on average time of searching
a local optimum. Here and below, we call a value polynomially bounded if there exists a function
polynomial in the length of input data which is an upper bound for this value.

The motivation of this study is the fact that a GA is often referred to as a class of local search methods
(e.g., see [5, 8]). Therefore, it is of interest to study in detail the cases when the performance of a GA is
explained by the similarity of its behavior to local search.

The article is structured as follows: Section 1 contains the definition of the class of NP-optimization
problems and some related basic notions along with the description of the GA under study. In Section 2,
an estimate of the average time of the first reach of a local optimum is obtained. In Section 3, using
the estimate, we study the average time of finding an optimum for two special families of problems.
In Section 4, the estimate from Section 2 is applied to the class of problems with guaranteed local
optima. Section 5 contains some concluding remarks.

1. STATEMENT OF THE PROBLEM AND DESCRIPTION OF THE ALGORITHM

1.1. NP-Optimization Problems

The definition of NP-optimization problem [4, 9] formalizes the notion of the combinatorial or
enumeration problem. Let {0, 1}∗ denote the set of strings of arbitrary length consisting of 0s and 1s,
let N be the set of natural numbers, and let |S| denote the length of a string S ∈ {0, 1}∗.

Definition 1. An NP-optimization problem is a triple Π = (I, Sol, fx), where I ⊆ {0, 1}∗ is a set
of instances from Π and the following hold:
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(i) there exists a deterministic Turing machine that recognizes in polynomially bounded time wether
a string x of the initial data belongs to I;

(ii) Sol(x) ⊆ {0, 1}n(x) is the set of feasible solutions of an instance x ∈ I; and, for some polynomial
poly, the dimension of the solution space is bounded as n(x) ≤ poly(|x|); moreover, for the input x and
the string x ∈ {0, 1}∗, it is possible to determine the membership x ∈ Sol(x) in polynomially bounded
time;

(iii) for x ∈ I, the objective function fx : Sol(x) → N which is subject to maximization (for NP-
maximization problem Π) or minimization (for NP-maximization problem Π) is computable in poly-
nomially bounded time.

Definition 2. An NP-optimization problem is called polynomially bounded if there exists a poly-
nomial of |x| that bounds the values fx(x) for x ∈ Sol(x).

An approximation algorithm for an NP-minimization (NP-maximization) problem has approxima-
tion ratio ρ ≥ 1 if it finds a solution for which the value of the objective function is at most ρ times greater
than the optimal value (at most ρ times less than the optimal value) for each solvable instance.

1.2. Neighborhoods and Local Optima

Assume that, for every element y ∈ Sol(x), a neighborhood Nx(y) ⊆ Sol(x) is defined. The family
{Nx(y) : y ∈ Sol(x)} is called a neighborhood system [9]. Here and below we assume that the
mapping Nx is computable in polynomially bounded time.

Definition 3. If, for some x ∈ Sol(x) and every y ∈ Nx(x), the inequality fx(y) ≤ fx(x) holds for
the maximization problem or fx(y) ≥ fx(x) holds for minimization problem then x is called a local
optimum in the neighborhood system Nx.

Assume that D(·, ·) is some metric defined on the elements from Sol(x). The set

Nx(x) = {y : D(x,y) ≤ k}, x ∈ Sol(x),

is called the neighborhood system of radius k generated by D(·, ·).
The local search algorithm starts with some feasible solution. Then, at each iteration, the algorithm

moves from the current solution to a new feasible solution in its neighborhood that has a better value
of the objective function as compared to the current. The process continues until a local optimum is
reached. The specific of a particular local search algorithm consists in the method of choosing a new
solution in the neighborhood of the current solution.

Since it is always clear from the context which instance x is considered, we will omit the symbol x for
short.

1.3. A Genetic Algorithm

A GA was suggested in [15] to be as an algorithm that simulates adaptation of a population to the
environment and uses a function of fitness of individuals. Subsequently, a GA has been actively used also
as an optimization method, where the fitness function is defined by the objective function of the problem.

Following the generally accepted approach, we assume that x ∈ Sol and the fitness function has
the form Φ(x) = ϕ(f(x)), where ϕ is some strictly increasing function for the maximization problem or
strictly decreases for the minimization problem. If x �∈ Sol then Φ(x) takes a value which is less than
that of any feasible solution; and this corresponds to a penalty for the violation of the constraints of the
problem.

Execution of a GA represents a consequent change of populations (generations) that consist of
N individuals. Here and below, by an individual we assume an element x of the solution space
B = {0, 1}n. An individual with greater fitness has more chances to produce descendants in the
next generation. The individuals of each next generation are constructed from the individuals of the
current population which are randomly affected by the operators of selection Sel : BN → {1, . . . , N},
mutation Mut : B → B, and crossing-over Cross : B × B → B × B. These operators can be generally
considered as some randomized procedures computable in polynomially bounded time [3]. Given the
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argument of such a procedure, the probability distribution of its output does not depend on the previous
stages of the algorithm.

Denote the generation t ≥ 0 of the population by Xt = (x1t, . . . ,xNt). The enumeration method for
the individuals in population does not matter. An iteration of a GA is a transition from Xt to Xt+1.
For ease of description of the algorithm we assume that N is even. Let us describe a scheme of the
generational genetic algorithm with tournament selection (e.g., see [16]). The genetic algorithm which
corresponds to this scheme will be referred to simply as GA.

Genetic algorithm GA

Step 1. Put t := 0.

Step 2. For k from 1 to N , do:

Step 2.1. Randomly construct an individual xk,0.

Iteration t:

Step 3. For k from 1 to N/2, do Steps 3.1–3.3.

Step 3.1. Selection: choose the individuals x := xSel(Xt),t and y := xSel(Xt),t.

Step 3.2. Crossing-over: construct (x′,y′) := Cross(x,y).

Step 3.3. Mutation: put x2k−1,t+1 := Mut(x′) and x2k,t+1 := Mut(y′).

Step 4. Put t := t + 1.

Step 5. If the stopping condition is not satisfied then go to Step 3 else go to Step 6.

Step 6. The result of the GA is the best found individual at all iterations.

At Step 2, the initial population X0 is formed whose elements are generated by some deterministic
or randomized procedure, e.g., according to the uniform distribution on B.

The selection operator has the same sense as the natural selection in the wildlife. The action of this
is selection of the index of the parent individual for constructing the next descendant. In this paper,
we study a widely used tournament selection operator [14]. This operator extracts s individuals from
the population with the uniform distribution and chooses the one with the best fitness as a parent. The
parameter s is called the tournament size.

The sizes of the population N and the tournament s, generally speaking, depend on the instance x;
and the choice of these parameters can significantly influence the speed of the population convergence
to the solutions of acceptable quality (e.g., see [10, 12]).

The stopping condition (Step 5) can be formulated in different ways: e.g., on reaching some given
fitness, on executing a given number of iterations, or on passing some given number of iterations without
any improvement of the best solution. For the ease of analysis we assume that the stopping condition is
never satisfied.

We assume that, with the probability at least ε, 0 < ε ≤ 1, the individuals (x′,y′) = Cross(x,y)
appear in result of crossover such that at least one of them has a fitness not worse than that of the
parent individuals x,y ∈ B; i.e.,

P
{

max{Φ(x′),Φ(y′)} ≥ max{Φ(x),Φ(y)}
}
≥ ε (1)

for all x,y ∈ B and, moreover, ε does not depend on x.
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1.4. Examples of Mutation and Crossover Operators

Of the greatest interest are several versions of the mutation and crossover that are widely used in
genetic algorithms and model the recombination and mutation processes in nature. We consider the
most famous operators of mutation Mut∗ and crossing-over Cross∗ of the classic genetic algorithm [15].

The result of crossing-over (x′,y′) = Cross∗(x,y) acting on the parent solutions x = (x1, . . . , xn)
and y = (y1, . . . , yn) is formed with probability Pc as

x′ = (x1, . . . , xχ, yχ+1, . . . , yn), y′ = (y1, . . . , yχ, xχ+1, . . . , xn),

where the random coordinate χ is chosen with uniform distribution from 1 to n − 1. With the probability
1 − Pc, the parent individuals are copied without changes; i.e., x′ = x and y′ = y. This operator Cross∗

is usually called a single-point crossover. The condition (1) is satisfied for it with ε = 1−Pc if Pc < 1 is
a constant that does not depend on x. Condition (1) is satisfied with ε = 1 if one of the two descendants
is a solution of the problem of optimal recombination of parent solutions (e.g., see [10]).

The action of Mut∗ is a computing the individual x′ = Mut∗(x), where each bit x′
i, i = 1, . . . , n,

independently with equal probability Pm is assigned the value 1 − xi, and with probability 1 − Pm, the
value xi.

The level of crossing-over and mutation effects depends on the parameters Pc and Pm which,
generally speaking, can depend on x. Increasing the mutation probability to 0.5 transforms the GA into
a simple random enumeration. Decreasing Pm to zero leads to small diversity in the population and can
lead to the “infinite loop” of GA when, at each iteration, only the previously generated individuals are
produced.

2. AVERAGE TIME OF REACHING A LOCAL OPTIMUM

Assume that we have NP-minimization problem Π = (I, Sol, fx) and a family of neighborhoods N .
Put h = |{f(x) : x ∈ Sol}| − 1; i.e., h is a number of all nonoptimal values of the objective function f .
Then, starting with an arbitrary solution, the local search reaches a local optimum in at most h iterations
improving the value of the objective function. Assume that L is the minimal probability of reaching
a solution inside a neighborhood:

L = min
x∈Sol, x′∈N (x)

P{Mut(x) = x′}.

The greater the value of L, the bigger is the consistency of the mutation operator Mut with the
neighborhood system N . We consider the size of population N , the size of tournament s, and the value L
as functions of the problem input data x. Assume that e is the Euler number.

Lemma 1. If X0 contains some feasible solution such that s ≥ rN , r > 0, h > 1, L > 0, and

N ≥ 2(1 + ln h)
Lε(1 − 1/e2r)

(2)

then (i) GA visits a local optimum by iteration h with the probability at least 1/e and (ii) local
optimum is reached in at most eh iterations of GA on average.

Proof. Note that, in the initial population, an individual with the highest fitness is a feasible solution
since the fitness of the individuals that correspond to the infeasible solutions is always less than
the fitness of the solutions from the feasible area. Assume that an event Et+1

k , k = 1, . . . , N/2, is
a satisfaction of the following three conditions:

(a) a solution xt
∗ with the biggest fitness in the population Xt is chosen from Xt while constructing

the kth pair of descendants of the next generation;

(b) while constructing the kth pair of descendants by crossing-over, one of them has a fitness at least
Φ(xt

∗) (let it be x′ for definiteness);
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(c) the mutation operator applied to x′ constructs a solution with the best fitness in the neighborhood
N (x′); i.e.,

Φ(Mut(x′)) = max
y∈N (x′)

Φ(y).

Given the population Xt, let p denote the probability of occurrence of at least one event Et+1
k for

k = 1, . . . , N/2. Let us find a bound λ ≤ p independent of the choice of Xt. By the GA scheme

P{Et+1
1 } = · · · = P{Et+1

N/2},

we denote this probability by q. Since the events Et+1
k , k = 1, . . . , N/2, are independent for fixed Xt,

p ≥ 1 − (1 − q)N/2 ≥ 1 − e−qN/2.

Find the lower bound for q:

q ≥ Lε(1 − (1 − 1/N)2s).

However, (1 − 1/N)2s ≤ (1 − 1/N)2rN ≤ 1/e2r ; therefore,

q ≥ Lε(1 − 1/e2r) = Lc,

where c = ε(1 − 1/e2r). Next, from the last inequality and from (2) it follows that

N ≥ 2
Lε (1 − 1/e2r)

≥ 2/q. (3)

Find the lower bound for p. At first, note that 1 − z/e ≥ e−z for any z ∈ [0, 1] and put z = e−qN/2+1.
Then, by (3) and z ≤ 1, we obtain

p ≥ exp{−e1−qN/2} ≥ exp{−e1−LcN/2}.

Next, we move from analysis of the descendants of the fixed population Xt to the random sequence of
the populations X0,X1, . . . . Note that λh is a lower bound for the probability of finding a local optimum
in a series of at most h iterations that improve the record value of the objective function. Indeed, assume
that At = Et

1 + · · · + Et
N/2, t = 1, 2, . . . . Then

P{A1& . . . &Ah} = P{A1}
h−1∏

t=1

P{At+1 | A1& . . . &At} ≥ λh. (4)

Thus, put λ = exp{−e1−LcN/2}. Again, using (2), we obtain the lower bound for the probability of
finding a local optimum in a series of at most h iterations improving the best-found solution:

λh = exp{−he1−LcN/2} ≥ exp{−he− ln h} = 1/e.

The proof of (i) of the lemma is complete.

To estimate the average time of obtaining a local optimum we consider a sequence of series of
h iterations each. Assume that the event Di, i = 1, 2, . . . , is the absence of a local optimum in the
population in the ith series. Under the conditions of the lemma the probability of each Di is at most
μ = 1 − 1/e for every preceding execution of algorithm. Similarly to (4), we conclude

P{D1& . . . &Dk} ≤ μk.

Thus, if we denote by η a random value equal to the number of the first series when the local optimum
was obtained then, using the properties of the mathematical expectation (e.g., see [1]), we have

E[η] =
∞∑

i=0

P{η > i} = 1 +
∞∑

i=1

P{D1& . . . &Di} ≤ 1 +
∞∑

i=1

μi = e.

Hence, the local optimum is found in at most eh GA iterations on average.
The proof of Lemma 1 is complete.
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Denote the upper rounding by �·	. Then under the conditions of Lemma 1 the choice

N = 2
⌈

1 + ln h

Lε(1 − 1/e2r)

⌉
, s = �rN	 (5)

assures obtaining a local optimum in GA in O(h) iterations on average.

The execution times of the operators Mut and Cross are polynomially bounded, and the procedure of
the tournament selection requires O(s) = O(N) time. Hence, we obtain

Theorem 1. If some Problem Π = (I, Sol, fx) and a function L−1(x) are polynomially bounded
and a population X0 of GA always contains feasible solution then, for the sizes of population and
tournament chosen according to (5), GA first visits a local optimum in polynomially bounded time
on average.

Note that the assumption of polynomial computability of N in Section 1 does not guarantee that
the power of the neighborhood is polynomially bounded; i.e., |N (x)| for all x ∈ Sol is bounded with
a polynomial in |x|. If N satisfies the last condition then it is called polynomially bounded [17]. For
this N , there exists a mutation operator Mut(x) computable in polynomially bounded time which sets
the uniform distribution of the descendant individuals on the set N (x) for x given. Then 1/L is also
upper bounded by some polynomial in |x|. Thus, Theorem 1 is applicable to many available families of
neighborhoods for the NP-optimization problems.

Denote a Hamming distance between two binary strings x and y by δ(x,y).

Definition 4. Assume that Π is an NP-optimization problem. The family of neighborhoods N
is called k-bounded [9] if, for every x ∈ Sol and y ∈ N (x), the inequality δ(x,y) ≤ k holds with
a constant k.

The mutation operator Mut∗ of the classic genetic algorithm [15] constructs a string y when mutation

is x with probability P
δ(x,y)
m (1 − Pm)n−δ(x,y). Note that the probability P k

m(1 − Pm)n−k as a function of
Pm ∈ [0, 1] reaches its maximum at Pm = k/n. The following gives a lower bound for the probability

P{Mut∗(x) = y} for all y ∈ N (x)

at optimal in the described sense choice of Pm = k/n:

Proposition 1. Assume that the family of neighborhoods N is k-bounded and k ≤ n/2. Then,
for Pm = k/n, x ∈ Sol, and y ∈ N (x), we have

P{Mut∗(x) = y} ≥
(

k

en

)k

.

Proof. For x ∈ Sol and y ∈ N (x), we have

P{Mut∗(x) = y} =
(

k

n

)δ(x,y) (
1 − k

n

)n−δ(x,y)

≥
(

k

n

)k (
1 − k

n

)n−k

since Pm = k/n ≤ 1/2. Further,

∂(1 − k/n)n−k

∂n
< 0 for n > k;

and, moreover,

(1 − k/n)n−k → 1/ek as n → ∞.

Hence, (1 − k/n)n−k ≥ 1/ek , which implies the claim.
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3. AN AVERAGE TIME OF OBTAINING AN OPTIMUM
FOR TWO SPECIAL FAMILIES OF PROBLEMS

3.1. The Family of Problems ONEMAX∗∗

As an example of application of Lemma 1 and Proposition 1 we consider the family of the single-
extremal problems that is often used in the analysis of evolutionary algorithms [11].

Let us define the family ONEMAX∗ of the objective functions of the form δ(x, a), where a ∈ {0, 1}n is
an optimal solution. Then ONEMAX∗∗ is defined as the family of functions ϕ ◦ g, where g ∈ ONEMAX∗,
ϕ : Z

+ → R is a strictly increasing function, Z
+ is the set of nonnegative integers, and R is the set of real

numbers. It is required to maximize a function f ∈ ONEMAX∗∗ on Sol = B. Note that, without the loss
of generality, it suffices to consider ϕ with natural numbers. As a fitness function for f ∈ ONEMAX∗∗ it
is natural to choose Φ(x) ≡ f(x).

In the neighborhood system of radius 1 generated by the Hamming metric, the point a is a unique
local optimum; i.e., it is the global optimum. According to Proposition 1 for Pm = 1/n, n > 1, for every
x ∈ Sol and y ∈ N (x), we have

P{Mut∗(x) = y} ≥ 1/(en).

Lemma 1 implies that if

s = rN, r > 0, N =
⌈2en(1 + ln n)

ε(1 − 1/e2r)
⌉

then the genetic algorithm first visits an optimum on average in at most en iterations. The time
complexity of the tournament selection in this genetic algorithm is O(N). If we assume that crossing-
over, mutation and computing of the objective function can be done in certain time T then the GA first
visits optimum on average in time O(Tn3 ln2 n). For example, in the classic genetic algorithm [15],
T = O(n); i.e., the optimum is first reached in time O(n4 ln2 n) on average.

3.2. The Family of Graph G(
) Vertex Cover Problems
A Minimum Vertex Cover Problem (VCP) can be stated as follows:

Let G = (V,E) be a graph with the sets of vertices V and the set of edges E. A subset C ⊆ V is
called a vertex cover if each edge from E is incident to at least one vertex from C. It is required to
find a vertex cover of minimal power.

Consider the family of VCPs of a particular form, where the graph G(
) consists of 
 three-vertex
complete subgraphs that are pairwise disconnected, 
 = 1, 2, . . . . Obviously, each of the triangular
subgraph is optimally covered with two vertices and nonoptimally, with three vertices. Despite the
simplicity of this problem, it is shown in [7] that some known algorithms, such as branch-and-bound,
have exponentially increasing time complexity with respect to the number of graph vertices.

Assume that the vertices and edges of the graph are enumerated, and, to each edge ei from E, one
bit xi is assigned in the encoding of the solutions from Sol, i = 1, . . . , n, and n = |E|. Assume that,
for each ei, the zero value of the bit xi means that the vertex incident to ei with a less index number is
included in C(x) and the value xi = 1 means that the vertex with a bigger number is included. Obviously,
with this approach of representing solutions, each string x ∈ B encodes some feasible solution; i.e., C(x)
is a cover.

As a fitness function for VCP, we can choose a strictly decreasing function of |C(x)|. Assume that
Φ(x) = |V | − |C(x)|. In this case, for the graph G(
), the value Φ(x) coincides with the number of
connected components that are optimally covered with vertices C(x).

In the neighborhood system with radius 1 generated by Hamming metric, every local optimum
is global. Similarly to the previous example, we obtain P{Mut∗(x) = y} ≥ 1/en, where n = 3
. By
Lemma 1, for s = rN , where

r > 0, N =
⌈6e
(1 + ln 
)
ε(1 − 1/e2r)

⌉
,

the genetic algorithm first visits an optimum in at most e
 iterations on average; i.e., the average time of
its execution till finding an optimum is polynomially bounded.
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4. ANALYSIS OF THE PROBLEMS WITH GUARANTEED LOCAL OPTIMA

Let us apply Theorem 1 to estimate the ability of a GA to find an approximate solution with the
guaranteed approximation ratio.

Definition 5. Assume that Π is a polynomially bounded NP-optimization problem. Problem Π
belongs to a class of the problems with guaranteed local optima (GLO) [9] if the following two
conditions hold:

(i) for every input x ∈ I, at least one feasible solution yx ∈ Sol can be computed in polynomially
bounded time;

(ii) there exists k ∈ N such that all local optima of Problem Π with respect to some k-bounded family
of neighborhoods have a constant approximation ratio.

The examples of problems from the GLO class are the problems of the maximum satisfiability of
a Boolean formula, or a maximum independent set, or a minimum dominating set, or a minimum vertex
cover of a graph with degrees of vertices bounded with a constant, as well as the problem of a maximum
graph cut [9].

If the NP-optimization problem Π lies in the class GLO then, by Proposition 1 for k ≤ n/2, for every
x ∈ Sol and y ∈ N (x), the mutation operator Mut∗ with Pm = k/n satisfies

P{Mut∗(x) = y} ≥ 1/poly(|x|),
where poly is some polynomial. The probability P{Mut∗(x) = y} has a positive constant lower bound
for n/2 < k < n. Thus, Theorem 1 implies

Corollary. Assume that Π is a problem from the class GLO, n > k, and the population X0

contains yx. Then the genetic algorithm with the mutation operator Mut∗ for Pm = k/n and
parameters N and s chosen according to (5) obtains a solution with a constant approximation
ratio on average in polynomially bounded time.

5. CONCLUSION

The main results establish some new properties of genetic algorithms from the perspective of
local optimization. The obtained estimations of average time complexity and proposed values for the
adjustable parameters provide the ideas on the trends of the genetic algorithms depending on the
increase of the size of tournament and the size of the population.
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